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We present a generic distributed algorithm for solving silents tasks such as shortest path
calculus, depth-first-search tree construction, best reliable transmitters, in directed networks
where communication may be only unidirectional. Our solution is written for the asyn-
chronous message passing communication model, and tolerates multiple kinds of failures
(transient and intermittent).

First, our algorithm is self-stabilizing, so that it recovers correct behavior after finite time
starting from an arbitrary global state caused by a transient fault. Second, it tolerates fair
message loss, finite message duplication, and arbitrary message reordering, during both the
stabilizing phase and the stabilized phase.This second property is most interesting since, in the
context of unidirectional networks, there exist no self-stabilizing reliable data-link protocol.
The correctness proof subsumes previous proofs for solutions in the simpler reliable shared
memory communication model.

I. Introduction

HISTORICALLY, research in self-stabilization over general networks has mostly covered undirected networks
where bidirectional communication is feasible and carried out using shared registers (see Ref. 1). This model

permits algorithm designers to write elegant algorithms and proofs. To actually implement such self-stabilizing
algorithms in real systems, where processors communicate by exchanging messages, transformers that preserve the
self-stabilizing property of the original algorithm are needed. Such transformers are presented in,1,2 and are based
on variants of the alternating bit protocol or the sliding window protocol. A common drawback to these transformers
is that they require the receiver of a message to be able to send acknowledgments to the emitter periodically, so that
the underlying message passing network must be bidirectional for the transformer to be correct.

Hence, in directed networks, acknowledgment-based transformers cannot be used to run self-stabilizing algorithms
in message passing networks, since it is possible that there exist two neighbors in the network that are only connected
through a unidirectional link. Moreover, in directed message passing networks, it is generally easy to maintain the
set of input neighbors (by checking who has “recently” sent a message), but it is very difficult (if not impossible)
to maintain the set of output neighbors. For instance, in a satellite or a sensor network, a transmitter is generally
not aware of who is listening to the information it communicates. Note also that wireless networks can be directed
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message passing networks, especially when power of emissions are not uniform: a node i can receive a message
from j while the converse is not possible.

So, self-stabilizing algorithms that use implicit neighborhood knowledge to compare one node state with those of
its neighbors and to check for consistency – a large subset of self-stabilizing algorithms – cannot be used in directed
networks.

The particular system hypothesis and the lack of transformers has led authors to design specific self-stabilizing
algorithms for directed networks.3–8

The solutions3–6 are “classical” in the sens that a self-stabilizing layer (or mechanism) is added to a well known
(non-stabilizing) protocol to ensure stabilization. This typically induces a potential overhead (extra knowledge,
variables, processing are needed). In contrast,7,8 are condition based: either the algorithm satisfies the condition (and
is then stabilizing) or not (and is not stabilizing). So, no overhead is induced by adding the self-stabilizing property
to the original algorithm (the original algorithm is not changed). The two solutions of 7,8 are generic (they can solve
multiple problem instances with a single parameterized algorithm), but perform in the unidirectional shared memory
model. In,8 the atomicity of communication is composite: in one atomic step, a processor is able to read the actual
state of all of its neighbors and update its state, while in,7 the atomicity is read-write: in one atomic step, a processor
is able to read the state of one neighbor, or update its state, but not both. Both approaches cannot be transformed
to perform in unidirectional message passing networks using known self-stabilizing transformers (see above). The
two solutions of 4–6 are specific (a single problem is addressed, the routing problem in,4 the census problem in,5

and the group communication problem in,6) but perform in directed message passing networks. While4,6 assume
reliable communications (links do not lose, duplicate or reorder messages),5 tolerates message loss, duplication, and
reordering.3 proposes a generic solution in the message passing model, but assumes that communications are reliable
(with FIFO links), that nodes have unique identifiers, and that the network is strongly connected, three hypothesis
that we do not make.

Our Contribution. In this paper, we concentrate on providing a generic algorithm (that can be instantiated to
solve silent tasks, see,9) that performs on general directed message passing networks. Our solution is not only self-
stabilizing (it recovers in finite time from any initial global state), it also tolerates fair message loss, finite duplication,
and arbitrary reordering both in the stabilizing and in the stabilized phase. Nice properties of our approach are that
the network need not be strongly connected, and nodes need not know whether the network contains cycles, and
no upper bound on the network size, diameter, or maximum degree. However, if such information is known, the
stabilization time can be significantly reduced.

We provide, in more details, a parameterized algorithm that can be instantiated with a local function. Our parame-
terized algorithm enables a set of silent tasks to be solved self-stabilizingly, provided that these tasks can be expressed
through local calculus operations called r-operators that operate over a set S. The r-operators are general enough to
permit applications such as shortest path calculus and depth-first-search tree construction on arbitrary graphs while
remaining self-stabilizing.

The main differences between this paper and the most closely related work7 are twofold. First, we consider an
unreliable message passing communication network, instead of a reliable shared memory system. As noted above,
unidirectional read-write systems cannot be emulated in message passing networks by means of a known self-
stabilizing transformer. The key difference is that shared registers may hold only the latest written value, while the
communications links we consider may hold an unbounded number of (possibly erroneous) messages that can appear
again once the network appears to have stabilized (due to the reordering assumption). Second, the proof technique
that we use here is based on a completely different idea than that of.7 In,7 it is first proved that a terminal configuration
is eventually reached starting from any initial configuration, and then (using a complicated induction argument) that
this terminal configuration is in fact legitimate. In contrast, in message passing networks, self-stabilizing systems
cannot be terminating (otherwise deadlock situations could occur, see,10) so the proof argument here is to prove the
following two invariants: (i) the state of each processor is eventually lower than (or equal to) its legitimate state (in
the sense of the order defined on S), and (ii) the state of each processor is eventually greater than (or equal to) its
legitimate state, so that the state of each processor is eventually legitimate. Not only is this new proof simpler and
more elegant than that of,7 it also permits algorithm designers to abstract the communication media that is used, so
that the same proof applies for shared memory and unreliable message passing systems.
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Fig. 1 A summary of related self-stabilizing algorithms in directed networks.

In Fig. 1, we capture the key differences between our protocol and the aforementioned related solutions (3–5,7,8)
in general directed networks regarding the following criteria: communication, overhead, atomicity, reliability, and
algorithm nature.

Outline. Section II presents a model for distributed systems we consider. Section III describes our self-stabilizing
parameterized algorithm for general directed networks, along with our system hypothesis. Our main result is pre-
sented, and is illustrated by an example. The sketch of the proof of correctness is also given. Section IV details the
proof. An interesting point is that this proof subsumes previous proofs for solutions in the simpler reliabl shared
memory model. In Section V we show how the very algebraic nature of our scheme makes it suitable for ad hoc
and sensor wireless networks, considering the unreliable communication mechanisms that are provided in those
networks. Concluding remarks are proposed in Section VI.

II. Model
Processors and Links. Processors use unidirectional communication links to transmit messages from an origin
processor o to a destination processor d . The link is interacting with one input port of d and one output port of o.
A link may hold an arbitrary number of messages (although our algorithm also works for bounded capacity links).
Depending upon the way messages are handled by a communication link, several properties can be defined on a
link. A complete formalization of these properties is proposed in.11 We only enumerate those that are related to
our algorithm. There is a fair loss when, infinitely many messages being emitted by o, infinitely many messages
are received by d . There is finite duplication when every message emitted by o may be received by d a finite (yet
unbounded) number of times. There is reordering when messages emitted by o may be received by d in a different
order than that they were emitted. There is eventual delivery if any message that is not lost is eventually received
(i.e., no message remains forever in a communication link).

Distributed System. A distributed system is a 2-tuple S = (P, L) where P is the set of processors and L is the set
of communication links. Such a system is modeled by a directed graph (also called digraph) G = (V , E), defined
by a set of vertices V and a set E of edges (v1, v2), which are ordered pairs of vertices of V (v1, v2 ∈ V ). Each vertex
u in V represents a processor Pu of system S. Each edge (u, v) in E represents a communication link from Pu to
Pv in S. In the remainder of the paper, we use interchangeably processors, nodes, and vertices to denote processors,
and links and edges to denote communication links. Also, we use the standard notation A\B to denote the set of
elements that are in set A but not in set B.

Graph Notations. The in-degree of a vertex v of G, denoted by δv is equal to the number of vertices u such that
the edge (u, v) is in E. The incoming edges of each vertex v of G are indexed from 1 to δv. A directed path Pv0,vk

in
a digraph G(V, E) is an ordered list of vertices v0, v1, . . . , vk ∈ V such that, for any i ∈ {0, . . . , k − 1}, (vi, vi+1) is
an edge of E (i.e., (vi, vi+1) ∈ E). The length of this path is k. If each vi is unique in the path, the path is elementary.
The set of all elementary paths from a vertex u to another vertex v is denoted by Xu,v . A cycle is a directed path Pv0,vk

where v0 = vk . The distance between two vertices u, v of a digraph G (denoted by dG(u, v), or by d(u, v) when
G is not ambiguous) is the minimum of the lengths of all directed paths from u to v (assuming there exists at least
one such path). The diameter of a digraph G is the maximum of the distances between all couples of vertices in G
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between which a distance is defined. Finally, we denote as �−
v (resp. �+

v ) the set of predecessors (resp. successors)
of a vertex v ∈ V , that is the set of all vertices u ∈ V such that there exists a path starting at u (resp. v) and ending
at v (resp. u). The predecessors (resp. successors) u of v verifying dG(u, v) = 1 (resp. dG(v, u) = 1)) are called
direct-predecessors (resp. direct-successors) and their set is denoted �−1

v (resp. �+1
v ).

Configurations and Executions. The global system state, called a system configuration (or simply configuration)
and generally denoted c, is the union of (i) the states of memories of processors of P and (ii) the contents of
communication links of L. The set of configurations is denoted by C. The part of information in a configuration c ∈ C
related to the processors of P is denoted by c |P ; the part related to a given processor P ∈ P is denoted by c |P .

Starting from an initial configuration c1, an execution ec1 = c1, a1, c2, a2, . . . is a maximal alternating sequence of
configurations and actions of such that, for any positive integer i, the transition from configuration ci to configuration
ci+1 is done through execution of action ai . Maximal means that either the computation is infinite, or the computation
is finite and no action is enabled in the final configuration. The notations Ec, EC and E denote respectively the set of
all executions starting (i) from the initial configuration c, (ii) from any configuration c ∈ C ⊂ C, or (iii) from any
configuration of C (EC = E). The ordered list c1, c2, . . . ∈ C of the configurations of an execution e = c1, a1, c2, a2, . . .

is denoted by e |C . In the rest of this paper, we adopt the following convention: if ci ∈ e |C appears before cj ∈ e |C ,
then i < j .

Distributed algorithms resolve either static tasks (e.g., distance computation) or dynamic tasks (e.g., token circu-
lation). The aim of static tasks is to compute a global result, which means that after a running time, processors always
produce the same output (e.g., the distance from a source). A static task is characterized by a final processor output
oP for any processor P ∈ P , called legitimate output. A legitimate configuration c for this task satisfies c |P = oP

for any processor P ∈ P . A distributed protocol designed for solving a given static task is correct if the distributed
system S running this protocol reaches in finite time a legitimate configuration for this task.

Self-Stabilization. A set of configurations C ⊂ C is closed if, for any c ∈ C, any possible execution ec ∈ Ec of
system S whose c is initial configuration only contains configurations in C. A set of configurations C2 ⊂ C is an
attractor for a set of configurations C1 ⊂ C if, any execution ec ∈ EC1 contains a configuration of C2. Let C ⊂ C be
a non-empty set of configurations. A distributed system S is C-stabilizing if and only if C is a closed attractor for C:
any execution e of E contains a configuration c of C, and any further configurations in e reached after c remains in C.
Finally, consider a static task for the distributed system S, and let L ⊂ C be the set of the legitimate configurations
of S. A distributed protocol designed for solving this static task is self-stabilizing if the distributed system S running
this protocol is L-stabilizing.

III. Parametric Message Passing PA-MP Algorithm
In this section, we first describe the distributed system we consider before defining the PA-MP parametrized

algorithm. We then introduce the r-operators, that are used as parameters. These operators are derivated from the
associative, commutative and idempotent operators (such as the minimum on the integers).

A. System
Let S = (P, L) be the distributed system we consider in the following. The associated graph composed of pro-

cessors of P and communications links of L is fixed, directed and unknown to the processors of P . Communications
between processors are performed by message passing (directed message passing network).

Each processor v of P is endowed with a local real-time clock mechanism. However, those clocks are used for
the sole purpose of being able to perform actions based on some timeout mechanism, so our clocks are neither
synchronized nor have bounded drift. Each processor v of P owns an incoming memory denoted as INv , which
is supposed to be unalterable; this can be implemented by a ROM memory (e.g., EPROM), or a memory that is
regularly reloaded by any external process (human interface, captor, other independent algorithm, etc.). The value of
this memory (that will never change) is called initialization value. For most provided applications, this initialization
value is equal to the identity element of the set S (except for a limited set of predecessors, see below). Moreover, for
each link, starting at processor u ∈ P and ending at processor v, there exists a corresponding incoming memory INu

v

in v, which is used by v to store incoming messages sent by u. Note that INu
v contains only one message. A processor
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v only stores the latest received message from u. In addition, processor v owns an output memory denoted by OUTv .
All these memories are private, and can only be read or written by v (note that v only reads INv , and only writes
OUTv). In the following, we identify the name of a memory with the value it contains. In the same way, a message is
considered as equivalent to its value.

Processor v performs a calculation by applying an operator � (see § C) on all of its incoming memories, and stores
the result in its output memory OUTv .

B. Algorithm
In this paper, we design a parameterized distributed protocol for Message Passing systems (denoted as PA-MP ).

This protocol is composed of one local parameterized algorithm per processor v of P , denoted by PA-MP |�v
, where

�v is an operator used as a parameter (parameters could be slightly different on each processor, see Hypothesis 2).
This local algorithm calls three helper functions: Storev(m, u) stores in the local register INu

v the contents
of the message m; Evaluatev(�v) stores in the local register OUTv the result of the local computation �v(INv,

INu1
v , . . . , INuk

v ) where u1, . . . , uk are direct predecessors of v (∈ �−1
v ); Forwardv sends OUTv to w for each

processor w ∈ �+1
v .

The local algorithm PA-MP |� on processor v is composed of two guarded actions, which are atomic sets of
instructions (actions) executed when a pre-condition (guard) is fulfilled (see Fig. 2).

The guard of Rule R1 is true when a message m from u is received, while the guard of Rule R2 makes use of a
timeout mechanism. So, our algorithm is both message-driven (an action is executed when a new message is received)
and timeout-driven (an action is executed when a timeout expires). In message passing systems, timeouts is required
for stabilization purposes since10 proved that no self-stabilizing algorithm could exist in message passing systems if
no kind of timeout mechanism is available. The reason for this impossibility result is that the system may start from
an arbitrary global state where no messages are in transit, so if no node has a sending action that is triggered by a
spontaneous timeout action, then the system is deadlocked.

Rule R2 is also used in case of message loss. In a typical implementation of our algorithm in an actual system,
the timeout mechanism should be tuned accordingly to the loss rate of the communication links, in order that not too
many spontaneous messages are emitted, and that the stabilization time remains reasonable. Tuning this timeout is
clearly beyond the scope of this paper.

C. r-Operators
An infimum (hereby called an s-operator) ⊕ over a set S is an associative, commutative and idempotent binary

operator. Such an operator defines a partial order relation �⊕ over the set S by x �⊕ y if and only if x⊕y = x and
then a strict order relation ≺⊕ by x ≺⊕ y if and only if x �⊕ y and x �= y.

It is generally assumed that there exists a greatest element on S, denoted by e⊕, and verifying x �⊕ e⊕ for every
x ∈ S. Hence, the (S, ⊕) structure is an Abelian idempotent semi-group with e⊕ as identity element. The prefix semi
means that the structure cannot be completed to obtain a group, because the law ⊕ is idempotent (see12).

When parameterized by such an s-operator ⊕, the PA-MP parametric local algorithm converges. However, some
counter examples show that it is not self-stabilizing.7 Consider a loop with a single node initialized with 1 and using

Fig. 2 Local algorithm PA-MP |�v on processor v.
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the operator min. The output of the node should always be 1. Now suppose that a fault introduces a 0 in the output
register of the node (which is sent to itself). Then the node will never produce the correct result.

In,13 a distorted algebra – the r-algebra – is proposed. This algebra generalizes the Abelian idempotent semi-
group, and still allows convergence of wave-like algorithms: the three basic properties (associativity, commutativity,
idempotency) defining the s-operators are generalized using a mapping (usually denoted r). For instance, the binary
operator 	 defined on the integers by x	y = x + 2y is not associative. However we have x	(y	z) = (x	y)	2z =
x	y	2z = x + 2y + 4z and 	 is r-associative with the mapping x 
→ 2x.

The following definition summarizes the conditions of existence of the r-operators. The first one (right identity
element) is classical. Here, the structure is not necessarily commutative, and only a right identity element is required.
The second one (weak left cancellation) is very useful for allowing some simplifications in structures that do not
admit inverses (such as idempotent semi-groups). It can be interpreted as follows: if there exists no element x in
the definition set that does not agree with the fact that y = z, then y = z. Almost all useful operators are weak left
cancellative, including the laws of groups (e.g., addition on the integers) and of semi-groups (e.g., minimum on the
integers).

Definition 1. The binary operator � on S is an r-operator if there exists a surjective mapping r called r-mapping,
such that the following conditions are fulfilled:

(i) right identity element: ∃e� ∈ S, x � e� = x.
(ii) weak left cancellation: ∀y, z ∈ S, (∀x ∈ S, x � y = x � z) ⇔ (y = z)

(iii) r-associativity: ∀x, y, z ∈ S, x �(y � z) = (x � y) � r(z);
(iv) r-commutativity: ∀x, y ∈ S, r(x) � y = r(y) � x;
(v) and r-idempotency: ∀x ∈ S, r(x) � x = r(x)

For example, the operator minc (x, y) = min(x, y + 1) (for minimum and increment) is an r-operator on Z ∪
{+∞}, with +∞ its right identity element.

Given an r-operator �, one can show that the r-mapping r is unique, and is an isomorphism of (S, �). Moreover, the
r-operator induces an s-operator on S by x � y = x⊕r(y) (for instance, the r-operator minc induces the s-operator
min). We also have e⊕ = e� and r(e⊕) = e⊕.

If no fault appears in the distributed system S, our PA-MP algorithm stabilizes when it is parameterized by any
idempotent r-operator �.13 Idempotent r-operators verify x �⊕ r(x) for any x ∈ S. This last property leads to the
definition of strict idempotency, verified for instance by the r-operator minc :

Definition 2. An r-operator � is strictly idempotent if, for any x ∈ S \ {e⊕}, we have x ≺⊕ r(x).

Note that, among others interesting properties, while it is not necessarily commutative, an r-operator � satisfies
∀x, y, z ∈ S, x � y � z = x � z � y, which means that the result of the PA-MP algorithm does not rely on any ordering
of the neighborhood.

Finally, binary r-operators can be extended to accept any number of arguments. This is useful for our algorithm
because a processor computes a result with one value per direct predecessor plus its own initialization value. An n-ary
r-operator � consists in n − 1 binary r-operators based on the same s-operator, and we have, for any x0, . . . , xn−1

in S, �(x0, . . . , xn−1) = x0⊕r1(x1)⊕ · · · ⊕rn−1(xn−1). If all of these binary r-operators are (strictly) idempotent, the
resulting n-ary r-operator is said (strictly) idempotent.

D. Hypotheses
In this section, we formalize some hypotheses, introduce some notations, and give basic lemmas that are used

throughout the proofs.

Hypothesis 1. In the distributed system S, links may (fairly) lose, (finitely) duplicate, and (arbitrarily) reorder
messages that are sent by neighboring processors. However, any message sent by u on the link (u, v) that is not lost
is eventually received by v (i.e. no message may remain in a communication link forever).

This is a weak hypothesis on link’s reliability. However, the following lemma is immediate.
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Lemma 1. Let consider a communication link (u, v) ∈ L. If the origin node u keeps sending the same message
infinitely often, then this message is eventually received by the destination node v.

Hypothesis 2. In the distributed system S running the PA-MP algorithm, any processor v runs the local algorithm
defined in Fig. 2 and parameterized by a strictly idempotent (δv + 1)-ary r-operator. Moreover, all these r-operators
are defined on the same set S, and are based on the same s-operator ⊕, with e⊕ their common identity element.

In other words, this hypothesis ensures a form of homogeneity in the distributed system we consider. The following
lemma is a direct application of Hypothesis 2, Definition 1, and Evaluate function:

Lemma 2. Let �v be the r-operator used by processor v. Then the computation of the Evaluatev(�v) function
can be rewritten as:
�v

(
INv, IN

u1
v , . . . , INuk

v

) = INv⊕ru1
v

(
INu1

v

) ⊕ · · · ⊕ruk
v

(
INuk

v

)
.

Hence, there is one r-mapping per communication link. We now define the composition of these mappings along
a path (Xu,v denotes the set of all elementary paths from u to v).

Definition 3. Let Pu0,uk
∈ Xu0,uk

be a path from processor u0 to processor uk , composed of the edges (ui, ui+1)

(0 ≤ i < k). Let ri
i+1, 0 ≤ i < k, be the r-mapping associated to the link (ui, ui+1). The r-path-mapping of Pu0,uk

,
denoted by rPu0 ,uk

, is defined by the composition of the r-mappings ri
i+1, for 0 ≤ i < k: rPu0 ,uk

= rk−1
k ◦ · · · ◦ r0

1 .

Our proofs of correctness (Lemmas 7 and 12) assume that any result produced on a node with the Evaluatev(�v)

function (see Lemma 2) is either the initial value of the node (INv) or one of its incoming value transformed by an
r-mapping (rui

v

(
INu1

v

)
). For this purpose, we admit that the order �⊕ defines a total order. Note that with stronger

nodes synchronization, such hypothesis is not necessary (see,8 where a proof for composite atomicity in a shared
memory model is given).

Hypothesis 3. The order relation �⊕ is a total order relation: ∀x, y ∈ S, either x �⊕ y or y �⊕ x.

Since the order �⊕ is total, when it is clear from the context, in the remaining of the paper we use “x is smaller
than y” (or “y is larger than x”) to denote x �⊕ y.

Hypothesis 4. The set S is either finite, or any strictly increasing infinite sequence of values of S is unbounded
(except by e⊕).

Assuming Hypothesis 3, Hypothesis 4 specifies that the values used in the distributed system S can be, for
instance, integers but not reals. Note that truncated reals (as in any computer implementation) are also convenient.
Hypotheses 2 and 4 give the following lemma:

Lemma 3. The set S is either finite or any r-mapping r used in S verifies: ∀x ∈ S \ {e⊕}, r(x) ≺⊕ e⊕.

Hypothesis 5. Each processor v admits at least one predecessor u ∈ �−
v such that INu �= e⊕, u is called a non-null

processor.

In the following, we denote by ÔUTv the legitimate output of processor v. Moreover, for any processor v, any
predecessor u of v and any configuration c, we denote by OUTv(c) and INu

v(c) the value of the memories OUTv and
INu

v in the configuration c.
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E. Our Result
Our protocol is dedicated to static tasks. Such tasks (e.g., the distance computation from a processor u) are

defined by one output per processor v (e.g., the distance from u to v), which is the legitimate output of v. With
our PA-MP algorithm, this means that, after finite time, each processor v ∈ P should contain this output (e.g.,
d(u, v)) in its outgoing memory OUTv . To solve static tasks with the PA-MP distributed algorithm, one must use an
operator as parameter (e.g., minc for distance computation) such that the distributed system S reaches the legitimate
configurations and do not leave them thereafter (i.e., any processor reaches and then conserves its legitimate output).
In this paper, we prove that if the operator is used to parameterize the PA-MP distributed algorithm, then it is
self-stabilizing, according to the hypotheses of § D.

Let us define the legitimate outputs of the processor using the r-operators that parameterize the PA-MP algorithm.
For instance, to solve the distance computation problem, we state S = N ∪ {+∞}, and each local algorithm is

parameterized by the minc r-operator (see § C).
All processors v verify INv = +∞ except a non null processor u verifying INu = 0 (0 is absorbing while +∞ is

the identity element for minc ). Each r-path-mapping adds its length to its argument (i.e., rP (x) = x + length(P )),
and we have:

d(u, v) = min

(
INv, min

w∈�−
v ,Pw,v∈Xw,v

{
rPw,v

(
INw

)})
We now define the legitimate output of a processor v in the general case.

Definition 4 (Legitimate output). The legitimate output of processor v is:

ÔUTv = INv⊕
⊕

u∈�−
v ,Pu,v∈Xu,v

rPu,v

(
INu

)
The following lemma is given by Lemma 3, Hypothesis 5 and Definition 4; it is used for proving Theorem 1.

Lemma 4. The set S is either finite or any processor v ∈ P verifies: ÔUTv ≺⊕ e⊕.

Now we defined ÔUTv , we define the set of legitimate configurations L ⊂ C of the protocol PA-MP (see Section III
and Fig. 2):

Definition 5 (Legitimate configuration). For any configuration c ∈ L, for any processor v ∈ P , OUTv(c) = ÔUTv .

Finally, after defining the distributed system S, the generic algorithm PA-MP , the r-operators used as parameters
and some Hypotheses, we can express the main result of this paper as follows, which is proved in the following
section:

Theorem 1. Algorithm PA-MP parameterized by any strictly idempotent r-operator is self-stabilizing in directed
message passing networks, despite fair loss, finite duplication and reordering of messages.

The message passing model that we consider leads to hard difficulties (compared for instance to shared memory
model.7) Indeed, with this model it is possible that an initially wrong message remains in a link for quite a long (finite)
time (e.g., after several new messages have been exchanged) and then is delivered to cause havoc in the system.

Note that to reuse7 in unreliable message passing systems, a self-stabilizing data link protocol is required, yet
no such data link protocol exists in unidirectional networks. So, our approach is the first to date to support multiple
metrics in (realistic) unreliable unidirectional networks.

We hereby give the main proof arguments. Details are provided in Section IV.

Sketch of proof: Despite weak hypotheses on the communication capabilities of every link (u, v), and possible
transient failures that could corrupt data in links or nodes communication buffers OUTu and INu

v , we have to prove
that eventually any input value read by v in INu

v has effectively been sent by u.
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Fig. 3 The minc r-operator on each node leads to a minimum distance tree computation in a unreliable
unidirectional network.

Even though this is true, it does not imply that a value sent by u will be received by v. Hence, a legitimate value
sent by u could be lost in (u, v), while the inputs of u that were used to produce it disappeared, either because of
transient failures, or simply because they were overwritten by other incoming values. This means that legitimate
values could completely be removed from S.

We actually have to prove that a value received by v on (u, v) has been sent by u after a given configuration. This
configuration is chosen such that the value of u fulfills some predicates. One of those predicates is that this value
has been built using incoming values of u sent by its predecessors after a given configuration. This permits to use
recursivity along paths of the network.

By weak fairness, any processor v calls Evaluate for updating its output OUTv using its inputs. By properties of
the r-operators, and using the total order Hypothesis (Hyp. 3), this output is either built with INv or with a received
value, say INu

v .
After the last transient failure, and since duplications are finite on the link (u, v), any value received by v has

been sent by u. Since every perturbation on the link is finite, there is a finite number of configurations between the
sending of the value by u and its receipt by v. Thus, if we consider a configuration that is far enough in the execution,
v must have updated its output using a value received by u after u has itself updated its output too. This way, we can
prove that any output is smaller or equal than the legitimate value, which means that every large unlegitimate value
eventually disappears from the network.

To complete the proof of correctness, we still have to prove that every processor v may not remain with a smaller
value than its legitimate one. Suppose this is the case, then by reusing a recursive reasoning, we obtain an infinite
path of processors, such that their outputs are strictly increasing along the path (by the strict idempotency property
of the r-operators). Since such a path does not exists in the network (that is finite), it is a cycle. This means that,
successive outputs of v increase without ever reaching its legitimate value. That contradicts Hypothesis 4. �

F. Example
Some r-operators have been proposed to compute the minimum distance tree and forest, the shortest path tree

and forest, the best reliable paths from some transmitters, the depth first search tree. . . More complex applications14

have also been proposed by combining several r-operators.
For instance, when the local algorithms are parameterized by the minc r-operator, the system stabilizes to a

minimum distance tree when all the node are initialized with eminc = +∞ except one (the root) initialized with 0
(see Fig. 3).

IV. Proof of Correctness
This section is divided into six parts. First, we give basic results related to the operators. Second, we prove that

eventually the output of each processors is updated using its inputs. Third, we show that eventually each received
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message was sent in the past. Fourth, we prove that each processor’s output is upper bounded. Fifth, we prove that
each processor eventually reaches its legitimate value. Finally, we present complexity results regarding our distributed
protocol.

A. Properties of the Operators
Any r-operator � defined on S induces an s-operator ⊕ on S by x⊕r(y) = x � y. Since the s-operator defines an

order relation �⊕ by x �⊕ y ≡ x⊕y = x, the Lemma 5 holds. Since r is an homomorphism of (S, ⊕), the Lemma 6
holds.

Lemma 5. For all x, y, z ∈ S, if x⊕y = z then z �⊕ x and z �⊕ y.

Lemma 6. For all x, y ∈ S, if x �⊕ y, then r(x) �⊕ r(y).

B. Outputs Eventually Result from Computations
We begin by defining some predicates on configurations.

Definition 6. Let P0a, P0b and P0c be predicates on configurations c ∈ C:

P0a(c) ≡ ∀v ∈ P, OUTv(c) �⊕ INv

P0b(c) ≡ ∀v ∈ P, ∀u ∈ �−1
v , OUTv(c) �⊕ ru

v (INu
v(c))

P0c(c) ≡ ∀v ∈ P, ∀u ∈ �−1
v , OUTv(c) = INv

∨ OUTv(c) = ru
v (INu

v(c))

Now, the set Q0 ⊂ E includes executions where processors eventually update their output. Every execution e of
Q0 reaches a configuration ci0 such that any subsequent configuration cj satisfies Predicates P0a , P0b and P0c.

Definition 7. Let Q0 ⊂ E be the set of executions such that:

∀e ∈ Q0, ∃ci0 ∈ e |C, ∀cj ∈ e |C with i0 ≤ j,

P0a(cj ) ∧ P0b(cj ) ∧ P0c(cj )

We now prove that, thanks to weak fairness hypothesis, any execution of E is in Q0.

Lemma 7. Every execution of the PA-MP algorithm in the distributed system S is in Q0.

Proof. Let e ∈ E be an execution. By weak fairness, every processor v ∈ P eventually executes a rule.
By definition of PA-MP (see Fig. 2), any execution of either rule at some node v processes Evaluate v(�v).
Then, for any processor v ∈ P , there exists a configuration civ ∈ e |C where processor v satisfies OUTv(civ ) =
�v

(
INv, IN

u1
v (civ ), . . . , IN

uδv
v (civ )

)
.

By Lemma 2, we have OUTv(civ ) = INv⊕ru1
v

(
INu1

v (civ )
) ⊕ · · · ⊕ruδv

v

(
INuδv

v (civ )
)
. Then, by Lemma 5, we have

OUTv(civ ) �⊕ INv and OUTv(civ ) �⊕ ru
v (INu

v) for any direct-predecessor u of v. Hence, both P0a(civ ) and P0b(civ )

hold. Now, since �⊕ defines a total order relation (Hypothesis 3), either OUTv(civ ) = INv or OUTv(civ ) = ru
v (INu

v(civ ))

for at least one predecessor u of v. This gives P0c(ci0) with i0 = maxv∈P iv .
Since any action of v executed upon receipt of a message or upon timeout expiration calls Evaluate, any

subsequent configuration satisfies Predicates P0a to P0c. �

C. Eventually Received Messages were Previously Sent
We define the set Q1 as the subset of executions E for which any received value has actually been sent in the past.

All executions e of Q1 reach a configuration ci1 such that, for any subsequent configuration cj and any communication
link (u, v), there exists a configuration cjuv

in which v sent the value contained in INu
v in configuration cj .
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Definition 8. Let Q1 ⊂ E be the set of executions that satisfy:

∀e ∈ Q1, ∃ci1 ∈ e |C{
∀cj ∈ e |C with i1 ≤ j, ∀(u, v) ∈ L,

∃cjuv
∈ e |C with juv ≤ j, OUTu(cj ) = INu

v(cjuv
)

We now prove that, thanks to Hypothesis 1 related to the properties of the communications links, any execution
is in Q1.

Lemma 8. Every execution of the PA-MP algorithm in the distributed system S is in Q1.

Proof. Let e ∈ E be an execution, and consider two processors u and v such that (u, v) is a communication link
of L. By definition of PA-MP , processor v sends the value of its OUTv variable infinitely often to each of its direct
successors. By Hypothesis 1, every message that is not lost is eventually delivered. Moreover, every message may
be duplicated only a finite number of times. It follows that, after a finite amount of time, only messages that were
sent by v are received by all of its direct successors. Hence, there exists a configuration cj ∈ e |C where the incoming
value in INu

v has actually been sent by u in a previous configuration cjuv
:

INu
v(cj ) = OUTu(cjuv

) with juv ≤ j (1)

After all initial erroneous messages between u and v have been received (including duplicates), and after a config-
uration where the above property holds, this property remains thereafter on this link. Since all links conform to the
same hypotheses, there exists a configuration ci1 ∈ e |C where the property holds (and remains so thereafter) for any
communication link. We conclude that e ∈ Q1. �

Note that this lemma does not indicate that any sent value is eventually received. Indeed, it may happen that
a message is lost while traversing a link, and the variable it was built with is erased by a new value. Then, any
re-sending would not provide the original value, that would not be received again. We now generalize the notation
we introduced in the previous proof.

Definition 9. Let us consider an incoming value INu
v(cj ) on processor v in the configuration cj . Then we denote by

cjuv
the configuration in which the value INu

v(cj ) has been sent by u, provided that this configuration exists.

The previous lemma indicates that, for any execution e ∈ E , there exists a configuration ci1 from which cjuv
exists

for any subsequent configuration cj (i1 ≤ j ), and any communication link (u, v). However, as captured in Fig. 4, the
definition of Q1 gives no guarantees about cjuv

appearing after configuration ci1 (that is i1 ≤ juv).
We now introduce additional sets of executions. The following definition, illustrated in Fig. 5, indicates that, for

any execution in Q1b, from a given configuration ci1b
, any given configuration ci admits a configuration ci ′ such that

any configuration cjuv
(with i ′ ≤ j ) appeared after ci (i.e., i ≤ juv).

Definition 10. Let Q1b ⊂ E be the set of executions that satisfy:

∀e ∈ Q1b, ∃ci1b
∈ e |C

∀ci ∈ e |C with i1b ≤ i, ∃ci ′ ∈ e |C with i ≤ i ′,
∀cj ∈ e |C with i ′ ≤ j, ∀(u, v) ∈ L,

cjuv
∈ e |C ∧ i ≤ juv ≤ j

Fig. 4 According to Q1, configuration cjuv exists but could appear before ci1 .
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Fig. 5 According to Q1b, from a configuration ci1b
, configurations cjuv can be found later than any given

configuration ci .

We show now that, thanks to weak fairness, every execution is in Q1b.

Lemma 9. Every execution of the PA-MP algorithm in the distributed system S is in Q1b.

Proof. Let e ∈ E be an execution that is not in Q1b. From Lemma 8, e is in Q1 and, from a configuration ci1 ∈ e |C ,
for every configuration cj and every link (u, v), the configuration cjuv

exists. Now, let us consider configurations ci ,
ci ′ and cj in e |C such that i1 ≤ i ≤ i ′ ≤ j . If e �∈ Q1b, then configuration cjuv

always appears before ci , even if ci ′

(and then cj ) is as far as possible from ci (see Fig. 6). This means that the values produced by processor u after cjuv

were never received, that contradicts Lemma 1. �

D. Outputs are Eventually Smaller Than (or Equal to) Legitimate Values
Let us begin by defining two predicates P2 and P2b on configurations. If P2(c) holds, then, in configuration c,

each processor is smaller than all initial values of its predecessors increased by some r-mappings (more precisely, for
any processor v and any of its direct-predecessors u, the output of v is smaller than the initial value of u transformed
by the r-path-mapping rPu,v

of the path Pu,v from u to v). If P2b(c) holds, then, in the configuration c, the output of
each processor v is smaller (in the sense of ⊕) than its legitimate output.

Definition 11. Let P2 and P2b be predicates on configurations c ∈ C:

P2(c) ≡ ∀v ∈ P, ∀u ∈ �−
v , ∀Pu,v ∈ Xu,v,

OUTv(c) �⊕ rPu,v
(INu)

P2b(c) ≡ ∀v ∈ P, OUTv(c) �⊕ ÔUTv

We now define two sets of executions Q2 and Q2b. If an execution e is in Q2 (resp· Q2b), then there exists a
configuration in e from which every configuration satisfies P2 (resp. P2b).

Definition 12. Let Q2 and Q2b be two subsets of E:

∀e ∈ Q2, ∃ci2 ∈ e |C, ∀cj ∈ e |C with i2 ≤ j, P2(cj )

∀e ∈ Q2b, ∃ci2b
∈ e |C, ∀cj ∈ e |C with i2b ≤ j, P2b(cj )

We now prove that, first every execution of E is in Q2, and then that every execution of E is in Q2b. This means
that, while the processor’s outputs can be larger than the legitimate values in the beginning of an execution, each
processor eventually produces some outputs that are smaller than or equal to its legitimate value. In other terms, any
erroneous values that are larger than legitimate values eventually disappear from S.

Fig. 6 If e �∈ Q1b, the configuration cjuv always appears before ci .
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Lemma 10. Every execution of the PA-MP algorithm in the distributed system S is in Q2.

Proof. Let e ∈ E be an execution, and let us consider a processor v0 ∈ P , and one of its direct-predecessor
v1 ∈ �−1

v0
. By Lemma 7, e is in Q0. Then, there exists a configuration ci0 ∈ e |C such that, for any subsequent

configuration cjv0
∈ e |C (i0 ≤ jv0 ), Predicate P0b(cjv0

) is satisfied: OUTv0(cjv0
) �⊕ rv1

v0
(INv1

v0
(cjv0

)).
Since e ∈ Q1, the above configuration cjv0

can be chosen after ci1 in e (i.e., i0 ≤ jv0 and i1 ≤ jv0 ) so that there
exists a configuration cjv1v0

∈ e |C that appears before cjv0
(i.e., jv1v0 ≤ jv0 ) satisfying: OUTv1(cjv1v0

) = INv1
v0

(cjv0
). This

gives:

OUTv0(cjv0
) �⊕ rv1

v0
(OUTv1(cjv1v0

)) (2)

Since e ∈ Q1b, it is possible to choose configuration cjv0
in e |C in order to ensure that cjv1v0

appears after ci0 . Hence,
without loss of generality, we can state i0 ≤ jv1v0 and thus P0a(cjv1v0

) holds. This means that OUTv1(cjv1v0
) �⊕ INv1

,
and, from Lemma 6, we have: rv1

v0
(OUTv1(cjv1v0

)) �⊕ rv1
v0

(INv1
).

Finally, we obtain the following relation, that remains true for configurations that appear after cjv0
:

OUTv0(cjv0
) �⊕ rv1

v0
(INv1

) (3)

and this result remains true hereafter.
To iterate the above reasoning from vertex v1 (instead of v0) at configuration cjv1v0

(instead of cjv0
), we must ensure

that cjv1v0
appears after ci0 (to use Q0) and after ci1 (to use Q1).Yet using the fact that e ∈ Q1b, the configuration cjv0

can
be chosen as far as necessary in e in order to ensure that the related configuration cjv1v0

happens after the configurations
ci0 and ci1 (see Fig. 5). Hence, for any path vk, . . . , v0, there exist some configurations cjvkvk−1

, . . . , cjv1 ,v0
, cjv0

such
that the following relations (obtained from Equations 2 and 3) remain true for the rest of the execution:

OUTv0(cjv0
) �⊕ rv1

v0
(OUTv1(cjv1v0

))

∧ OUTv0(cjv0
) �⊕ rv1

v0
(INv1

)

OUTv1(cjv1v0
) �⊕ rv2

v1
(OUTv1(cjv2v1

))

∧ OUTv1(cjv1v0
) �⊕ rv2

v1
(INv2

)

... �⊕
...

OUTvk
(cjvkvk−1

) �⊕ rvk−1
vk

(OUTv0(cjv1v0
))

∧ OUTvk
(cjvkvk−1

) �⊕ rvk−1
vk

(INvk−1
)

(4)

Then, for any predecessor vk of v0 and any path Pvkv0 ∈ Xvk,v0 from vk to v0, there exists a configuration cjv0

such that the following remains true in any subsequent configuration: OUTv0(cjv0
) � rPvkv0

(INvk
). Hence there exists

a configuration ci2 reached after all configurations cjv0
(for any processor v0 ∈ P) and such that, for any further

configuration cj (i.e., i2b ≤ j ), we have P2(cj ). This gives the lemma. �

Lemma 11. Every execution of the PA-MP algorithm in the distributed system S is in Q2b.

Proof. Let us consider an execution e ∈ E . Since e ∈ Q2, there exists a configuration ci2 ∈ e |C such that, for any
subsequent configuration cj ∈ e |C (i.e., i2 ≤ j ), P2(cj ) holds:

∀v ∈ P, ∀u ∈ �−
v , ∀Pu,v ∈ Xu,v, OUTv(cj ) �⊕ rPu,v

(INu)

Then, we have:

∀v ∈ P, OUTv(cj ) �⊕
⊕

u∈�−
v ,Pu,v∈Xu,v

rPu,v
(INu)
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Since e ∈ Q1, some of these configurations cj also satisfy predicate P0a . Without loss of generality, we assume that
P0a(cj ) holds: OUTv(cj ) �⊕ INv . Hence, we have:

∀v ∈ P, OUTv(c) �⊕ INv⊕
⊕

u∈�−
v ,Pu,v∈Xu,v

rPu,v
(INu)

This ends the proof, by Definition 4. �

E. Legitimate Values are Eventually Reached
Let us begin by defining a predicate on system configurations.

Definition 13. Let P3 be a predicate on configurations c ∈ C:

P3(c) ≡ ∀v ∈ P, OUTv(c) = ÔUTv

We now define the set of executions Q3, that corresponds to executions of E for which every processor eventually
reach its legitimate value: all executions of Q3 reach a configuration ci3 such that, for any subsequent configuration
cj , the outputs of every processor v in cj are equal to their legitimate values.

Definition 14. Let Q3 ⊂ E be the set of executions that satisfy:

∀e ∈ Q3, ∃ci3 ∈ e |C, ∀cj ∈ e |C, with i3 ≤ j, P3(c)

We now prove that any execution is in Q3.

Lemma 12. Every execution of the PA-MP algorithm in the distributed system S is in Q3.

Proof. Let e ∈ E be an execution, and suppose that e �∈ Q3. Since �⊕ defines a total order (Hypothesis 3), we
have:

∀ci3 ∈ e |C, ∃cj ∈ e |C, with i3 ≤ j,

∃v ∈ P, ÔUTv ≺⊕ OUTv(cj ) ∨ OUTv(cj ) ≺⊕ ÔUTv

(5)

By Lemma 11, e is in Q2b and there exist some configurations cj that satisfy both i3 ≤ j and i2b ≤ j , so that
OUTv(cj ) �⊕ ÔUTv . Hence, Equation 5 becomes:

∀ci3 ∈ e |C, ∃cj ∈ e |C, with i3 ≤ j,

∃v ∈ P, OUTv(cj ) ≺⊕ ÔUTv

(6)

By Definition 4 and Lemma 5, we have ÔUTv �⊕ INv . This gives OUTv(cj ) ≺⊕ INv . Since e ∈ Q0, there exist some
configurations cj ∈ e |C satisfying both Equation 6 and P0c(cj ), that is i0 ≤ j . Without loss of generality, we suppose
that P0c(cj ) holds: ∃u ∈ �−1

v , OUTv(cj ) = ru
v (INu

v(cj )).
As OUTv(cj ) ≺⊕ ÔUTv , we have ru

v (INu
v(cj )) �= e⊕. Since ru

v (e⊕) = e⊕ (see § C), we have INu
v(cj ) �= e⊕. Then,

by Definition 2, we have INu
v(cj ) ≺⊕ ru

v (INu
v(cj )) and finally INu

v(cj ) ≺⊕ OUTv(cj ). Hence, the following holds:
∃u ∈ �−1

v , INu
v(cj ) ≺⊕ OUTv(cj ).

By Lemma 8, e ∈ Q1, and there exists some configuration cj that satisfy i1 ≤ j (as well as i4 ≤ j , i2b ≤ j

and i0 ≤ j ) and for which configuration cjuv
exists in e and verifies OUTu(cjuv

) = INu
v(cj ). Then OUTu(cjuv

) ≺⊕
OUTv(cj ) ≺⊕ ÔUTv . This means that at least one of the direct-predecessors u of v verifies OUTu(cjuv

) ≺⊕ ÔUTu ∨
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ÔUTu ≺⊕ OUTu(cjuv
) (indeed, if all predecessors of v reached and hold their legitimate value, then v would reach its

legitimate value too). Hence, Equation 6 becomes:

∀ci3 ∈ e |C, ∃cj ∈ e |C, with i3 ≤ j,

∃u, v ∈ P with u ∈ �−1
v , ∃cjuv

∈ e |C, with ju,v ≤ j(
OUTu(cjuv

) ≺⊕ ÔUTu ∨ ÔUTu ≺⊕ OUTu(cjuv
)
)

∧ OUTu(cjuv
) ≺⊕ OUTv(cj ) ≺⊕ ÔUTv

(7)

To iterate the above argument from processor u instead of v, and from configuration cjuv
instead of cj , we argue

that i0 ≤ juv , i1 ≤ juv , and i2b ≤ juv . By Lemma 9, e is in Q1b. This means that configurations ci3 in the above
equation can be chosen so that every configurations cjuv

appear after configurations ci0 , ci1 and ci2b
(see Fig. 5). This

allows to re-use the above reasoning with configuration cjuv
instead of cj .

By iterating the above arguments, and since the network is finite, we exhibit a cycle of nodes and a set of
configurations cj0 , cj1 . . . appearing after ci4 in e such that, for a node w in the cycle, we have:

OUTw(cj0) ≺⊕ OUTw(cj1) ≺⊕ . . . ≺⊕ ÔUTw (8)

Using the fact that e ∈ Q1b, this can be found after any configuration ci4 in the execution e. This means that,
regardless of configuration ci4 , there exist subsequent configurations cj0 , . . . cj1 , such that ÔUTw increases strictly
without reaching its legitimate value. We then exhibit a strictly increasing sequence of values of S that never reach
ÔUTw. This is impossible if S is finite. If S is infinite, then Lemma 4 gives ÔUTw ≺⊕ e⊕. The sequence of values is
then upper bounded, that contradicts Hypothesis 4. Hence, e ∈ Q3. �

F. Complexity
In the convergence part of the proof, we only assumed that computations were maximal, and that message loss,

duplication and desequencing could occur. In order to provide an upper bound on the stabilization time for our
algorithm, we assume strong synchrony between processors. Note that these assumptions are used for complexity
results only, since our algorithm was proved correct even in the case of asynchronous unfair computations with link
intermittent failures. In the following, D denotes the network diameter.

In order to give an upper bound on the space and time requirements, we assume that the set S is finite, and that |S|
denotes its number of elements. This assumption is used for complexity results only, since our algorithm was proved
to be correct even in the case when S is infinite. Note that in any implementation the set of possible values is finite,
and if the memories INv and OUTv of each node v contains n bits, then |S| = 2n.

The space complexity result is immediately given by the assumptions made when writing Algorithm PA-MP .

Lemma 13 (Space Complexity). Each processor v ∈ S holds (δv + 1) × log2(|S|) bits.

Proof. Each processor v has δv local variables that hold the value of the last message sent by the corresponding
direct predecessor, and one register used to communicate with its direct descendants. Each of these local variables
may hold a value in a finite set S, then need log2(|S|) bits. Note that the constant stored in ROM is not taken into
account in this result. �

Lemma 14 (Time Complexity). Assuming a synchronous system S, the stabilization time is O(D + |S| + k), where
D is the network diameter, and k is the sum of the number of lost and duplicated messages.

Proof. We define φ as the function that returns the index of a given element of S. This index always exists since
S is ordered by a total order relation. The signature of φ is as follows:

φ : S −→ N

s 
−→ φ(s)
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Also, we have

s1 ≺⊕ s2 ⇒ φ(s1) < φ(s2)

Assume there are at most k lost messages. After O(D + k) steps, every node in the network has received values
from all of their predecessors. If those values were badly initialized, then the received values are also possibly badly
valued.

For each node u, we consider the difference between the index of its final value (since the algorithm converges to a
legitimate configuration where OUTu = ÔUTu) and the index of the smallest received value which is badly initialized.
The biggest possible difference is M − m, where M is the maximum index value of S and m the minimum index
value of S. This difference is called d and is O(|S|).

For each node u, we also consider the smallest and the greatest (in the sense of increasing) r-path mapping from
u to u. Let l be the length of the smallest such r-path mapping. It increases a value index by at least l. The greatest
such r-path mapping increases a value index by at most d, and is of length at most d.

In the worst case, there exists a node that has an incorrect input value indexed with m, a correct input value indexed
with M , so it has to wait until the incorrect value index is increased by M − m before the incorrect value effect is
canceled. Each l time units at least, this incorrect value index is increased by l.Again, in the worst case, if �d/l� < d/l,
another incorrect value may still be lower than the correct value, and the greatest cycle may be followed, inducing an
extra d time delay. This process can be repeated up to k times du to the duplication of the initial (incorrect) message,
but due to network synchrony, each duplicated message is delivered in the next time unit, so this process may only
have an additive delay of O(k). Overall, after the first O(D + k) time units, (�d/l� × l) + d + k = O(d + k) time
units are needed. �

V. Application to Wireless ad hoc and Sensor Networks
In this section, we describe how the loose requirements of our scheme make it suitable for wireless networks such

as ad hoc and sensor networks.

A. Specific Constraints
Ad hoc networks do not have any fixed infrastructure, and each node may acts as a router. In some cases, the

topology can be highly dynamic, such as in VANET (vehicular ad hoc networks). Sensor networks are a special
case of ad hoc networks were nodes have limited capacities but are generally not mobile. However, due to the large
number of nodes (several hundred thousands in forecast sensor networks) and the fact that those nodes are supposed
to be low cost and be battery powered, it becomes extremely likely that hardware failure will occur quite often, even
if a small subset of nodes is concerned. As a result, both dynamic ad hoc networks and sensor networks exhibit the
following property: the node’s neighborhood and local topology are not stable.

Communications in wireless ad hoc and sensor networks are typically not bidirectional, due to the various
possible ranges of antennas, and the fact that nodes could be deployed in various geographical settings. Also, some
applications for sensor networks do not require that the network is strongly connected, such as alert propagation
to a monitoring station (only communication from any sensor to the monitoring station is required in this case).
Conversely, a broadcast message does not require any answer from a receiver. Thus, some nodes could be reached by
the broadcasted message, while they are not able to reach the sender back because the gain of their antenna or their
transmission power is too small. Such broadcast messages are used very frequently in ad hoc and sensor networks,
e.g., for neighborhood and route discovery, routing table updates, etc. In short, not all links are bidirectionnal in
ad hoc and sensor networks, and it is even possible that the network is not strongly connected.

It is well acknowledged that wireless communications are subject to frequent failures, due to the possible collisions
and interferences that can occur when neighboring nodes try to communicate at the same time. This results in messages
being lost. While broadcast messages are generally not resent in case of loss (the loss may affect only part of the
receivers), unicast communications generally have the sender detect a packet loss using acknowledgements. Of course,
such an acknowledgment can be delayed (due to some collisions) in such a way that the sender will resend the message.
As a consequence, in some situations (depending on the network layers involved), some messages could be duplicated.
Also, since for example sensor networks are composed of nodes with low processing power, some desequencing is
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expected for message delivery when nodes are overloaded. Overall, it is expected that communications are subject
to losses, duplications and desequencing.

Another technical issue is related to the limited memory of the nodes, especially for sensor networks. For instance,
some sensors only maintain 4kB of memory. This induces some difficulties in large networks. In order to store the
identity of a neighbor, at least log2(N) bits are required for a N -sized networks. Hence, in some large networks
with high degrees, the nodes may not be able to store all identities of their neighbors up to some distance k. As
a consequence, the nodes would not be able to determine whether they already received a message from a given
neighbor or not, nor distinguish the senders of the received messages. Overall, a generic suitable distributed algorithm
should not rely on the node ability to identify its neighborhood.

B. r-Operators in Wireless Networks
While some previous works on self-stabilizing sensor networks expect nodes to be aware of their location15 or

the identity of the nodes in their vicinity, the bootstrapping process that is needed to collect this information can
be costly. This is particularly true when the topology is dynamic and the neighborhood unstable. Also, as explained
above, the hypothesis that nodes have unique IDs (that is mandatory to properly construct the set of identifiers in one
vicinity, e.g., in16) could be falsified if such a property can not be guaranteed in practise, especially in large sensor
networks. Previous approaches mentioned in the introduction3–8 rely heavily on some kind of local knowledge about
the topology: number of distinct input links, number of distinct output links, diameter of the network (for some).

In contrast, the correctness of the scheme presented in this paper does not rely necessarily on e.g., distinct neigh-
bors, but rather on the number of distinct input values.As such, our algorithm for unreliable message passing networks
can be derived into a scheme for wireless networks where nodes use a local broadcast primitive to communicate with
neighbors. It is worth noting, though, that if nodes are not able to distinguish the message’s senders, they cannot
apply a specific r-function to each received data. In other words, applications such as weighted shortest path cannot
be solved in wireless anonymous networks because the communication links cannot be distinguished. Hence, a single
r-function is used for all incoming values, leading to a binary r-operator. One such qualifying r-operator is the minc
operator, that allows to solve some distance related problems.

Our algorithm can be modified as follows to be used in anonymous unreliable dynamic networks.
1. The IN fixed table that stores the incoming values is replaced by an associative memory of tuples (v, t)

where v ∈ S and t is a time-stamp. In this associative memory, v is supposed to have been received by some
anonymous neighbor node at local time t . Each time a value is received through a delivered message, the
entry in the associative memory is either inserted (if the value is new) or updated with a new time-stamp.
To prevent from bad initialization, each time the associative memory is updated, old entries are removed
(following e.g., the technique provided in16)

2. Instead of computing using the IN table, the r-operator operates on the associative memory values.
3. Instead of sending a message to each outgoing link, nodes simply perform a local broadcast of their value.
This scheme assumes that nodes are endowed with a local real time clock (with no assumptions made about

clock synchronization or possible drift), and that the timeouts are properly set so that an actual value at some node
is regularly sent to the outgoing neighbors (by a local broadcast), in order that those nodes in turn do not remove
this value from their associative memory. Most schemes envisioned today for wireless communication between
neighboring nodes are probabilistic and guarantee that between any two successful sendings, a constant amount of
time is expected, provided that the density in each vicinity is upper bounded by a constant, so our hypothesis remains
reasonable. Actually tuning the timeout so that incorrect entries are quickly removed yet correct entries remain in
the system is however beyond the scope of this paper.

VI. Concluding Remarks
We presented a generic distributed algorithm for message passing networks applicable to any directed graph

topology. This algorithm tolerates transient faults that corrupt the processors and communication links memory as
well as intermittent faults (fair loss, reorder, finite duplication of messages) on communication media. Our contribution
allows to envisage new applications for wireless networks (such as sensor networks), where nodes are not aware of
their neighbors, and communications could be unidirectional (e.g., non uniform power) and unreliable.
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We provided evidence that our scheme is also suitable (for a restricted set of operators) to wireless networks, sur
as ad hoc and sensor networks. Because our approach is essentially value based, computations can be carried out in
potentially anonymous networks without the need of a bootstrapping process.

As an illustration, we quickly presented a simple application of the minc r-operator for solving the shortest path
tree problem. Thanks to our generic approach, many others applications can be solved in the same way, by simply
changing the operator. Moreover only local conditions have to be checked to insure the self-stabilization of our
algorithm. Some r-operators have already been proposed for solving both fundamental and high level applications
(see7,8) such as: shortest paths spanning tree and related problems, best reliable paths from some transmitters, depth
first search tree . . . More complex applications can be solved with specific r-operators, though the completeness of
r-operators is an open problem.
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